San Pablo Catholic University (UCSP) **Undergraduate Program in Computer Science SILABO**

CS210. Algorithms and Data Structures (Mandatory)

2. Professors

Lecturer

- Alex Jesús Cuadros Vargas <a cuadros@ucsp.edu.pe>
 - ■PosDocIn∎ Ciencia de la Computación, ICMC-USP, Brasil, 2009.
 - PhD in Ciencia de la Computación, ICMC-USP, Brasil, 2007.
 - MSc in Ciencia de la Computación, ICMC-USP, Brasil, 2001.

Practice

- Gustavo Delgado Ugarte <ggdelgado@ucsp.edu.pe>
 - MSc in Ingeniería del Software, Escuela Universitaria de Ingeniería Industrial, Informática y Sistemas UTA, Chile, 2009.

3. Course foundation

The theoretical foundation of all branches of computing rests on algorithms and data structures, this course will provide participants with an introduction to these topics, thus forming a basis that will serve for the following courses in the career.

4. Summary

1. Graphs 2. Scatter Matrices 3. Balanced Trees

5. Generales Goals

- Make the student understand the importance of algorithms for solving problems.
- Introduce the student to the field of application of data structures.

6. Contribution to Outcomes

This discipline contributes to the achievement of the following outcomes:

- 1) Analyze a complex computing problem and to apply principles of computing and other relevant disciplines to identify solutions. (Usage)
- 2) Design, implement and evaluate a computing-based solution to meet a given set of computing requirements in the context of the program's discipline. (Usage)
- 6) Apply computer science theory and software development fundamentals to produce computing-based solutions. (Usage)

7. Content

UNIT 1: Graphs (12)		
Competences:		
Content	Generales Goals	
 Graph Concept Directed Graphs and Non-directed Graphs. Using Graphs. Measurement of efficiency ,in time and space. Adjacency matrices. Tag adjacent matrices. Adjacency Lists. Implementation of graphs using adjacency matrices. Graph Implementation using adjacency lists Insertion, search and deletion of nodes and edges. Graph search algorithms. 	 Acquire Dexterity to Perform Correct Implementation. [Usage] Develop knowledge to decide when it is better to use one implementation technique than another. [Usage] 	
Iteaungs. Cormon et al. (2003), rager et al. (2014), Kilutii (1337), Kilutii (1330)		

UNIT 2: Scatter Matrices (8)	
Competences:	
Content	Generales Goals
• Initial concepts.	• Understand the use and implementation of scatter
• Dense Matrices	matrices.[Assessment]
• Measurement of Efficiency in Time and Space	
• Static scatter vs. dynamic matrix creation.	
• Insert, search, and delete methods.	
Readings: Cormen et al. (2009), Fager et al. (2014), Knuth	(1997), Knuth (1998)

UNIT 3: Balanced Trees (16)		
Competences:		
Content	Generales Goals	
 AVL Trees. Measurement of Efficiency. Simple and Composite Rotations Insertion, deletion and search. Trees B , B+ B* y Patricia. 	• Understand the basic functions of these complex structures in order to acquire the capacity for their implementation. [Assessment]	
Readings: Cormen et al. (2009), Fager et al. (2014), Knuth (1997), Knuth (1998)		

- 8. Methodology
- 1. El profesor del curso presentará clases teóricas de los temas señalados en el programa propiciando la intervención de los alumnos.
- 2. El profesor del curso presentará demostraciones para fundamentar clases teóricas.
- 3. El profesor y los alumnos realizarán prácticas
- 4. Los alumnos deberán asistir a clase habiendo leído lo que el profesor va a presentar. De esta manera se facilitará la comprensión y los estudiantes estarán en mejores condiciones de hacer consultas en clase.

9. Assessment Theory Sessions:

The theory sessions are held in master classes with activities including active learning and roleplay to allow students to internalize the concepts.

Practical Sessions:

The practical sessions are held in class where a series of exercises and/or practical concepts are developed through problem solving, problem solving, specific exercises and/or in application contexts.

Evaluation System:

The final grade is obtained through of:

CONTINUOUS ASSESMENT	EVALUATIONS
Continuous assessment 1 : 20 %	Midterm Exam : 30 %
Continuous assessment 2 : 20 %	Final Exam : 30 %
40%	60%

Where:

Continuous Assessment: It includes group work, active participation in class, exercise test.

- Continuos assessment 1 (weeks 1 9)
- Continuos assessment 2 (weeks 10 17)

To pass the course you must obtain $11.5 \ {\rm or}$ more in the final grade .

References

Cormen, Thomas H. et al. (2009). Introduction to Algorithms. Third Edition. ISBN: 978-0-262-53305-8. MIT Press.

- Fager, José et al. (2014). *Estructura de datos*. First Edition. Iniciativa Latinoamericana de Libros de Texto Abiertos (LATIN).
- Knuth, Donald E. (1997). The Art of Computer Programming, Vol. 1: Fundamental Algorithms. 3rd. Addison-Wesley Professional.
- Knuth, Donald E. (1998). The art of computer programming, volume 3:Sorting and searching. 2nd. Addison-Wesley Professional.