
San Pablo Catholic University (UCSP)
Undergraduate Program in

Computer Science
SILABO

CS342. Compilers (Mandatory)

2022-II
1. General information
1.1 School : Ciencia de la Computación
1.2 Course : CS342. Compilers
1.3 Semester : 8vo Semestre.
1.4 Prerrequisites : CS341. Programming languages . (7th Sem)
1.5 Type of course : Mandatory
1.6 Learning modality : Face to face
1.7 Horas : 2 HT; 2 HP; 2 HL;
1.8 Credits : 4

2. Professors

3. Course foundation
That the student knows and understands the concepts and fundamental principles of the theory of compilation to
realize the construction of a compiler

4. Summary

1. Program Representation 2. Language Translation and Execution 3. Syntax Analysis 4. Compiler Semantic Analysis
5. Code Generation

5. Generales Goals

• Know the basic techniques used during the process of intermediate generation, optimization and code generation.

• Learning to implement small compilers.

6. Contribution to Outcomes
This discipline contributes to the achievement of the following outcomes:

a) An ability to apply knowledge of mathematics, science. (Assessment)

b) An ability to design and conduct experiments, as well as to analyze and interpret data. (Assessment)

j) Apply the mathematical basis, principles of algorithms and the theory of Computer Science in the modeling and
design of computational systems in such a way as to demonstrate understanding of the equilibrium points involved
in the chosen option. (Assessment)

7. Content

1



UNIT 1: Program Representation (5)
Competences: a,b
Content Generales Goals

• Programs that take (other) programs as input such
as interpreters, compilers, type-checkers, documen-
tation generators

• Abstract syntax trees; contrast with concrete syntax

• Data structures to represent code for execution,
translation, or transmission

• Just-in-time compilation and dynamic recompilation

• Other common features of virtual machines, such as
class loading, threads, and security.

• Explain how programs that process other programs
treat the other programs as their input data [Famil-
iarity]

• Describe an abstract syntax tree for a small language
[Familiarity]

• Describe the benefits of having program representa-
tions other than strings of source code [Familiarity]

• Write a program to process some representation of
code for some purpose, such as an interpreter, an
expression optimizer, or a documentation generator
[Familiarity]

• Explain the use of metadata in run-time representa-
tions of objects and activation records, such as class
pointers, array lengths, return addresses, and frame
pointers [Familiarity]

• Discuss advantages, disadvantages, and difficulties of
just-in-time and dynamic recompilation [Familiarity]

• Identify the services provided by modern language
run-time systems [Familiarity]

Readings: Louden (2004b)

2



UNIT 2: Language Translation and Execution (10)
Competences: a,b,j
Content Generales Goals

• Interpretation vs. compilation to native code vs.
compilation to portable intermediate representation

• Language translation pipeline: parsing, optional
type-checking, translation, linking, execution

– Execution as native code or within a virtual
machine

– Alternatives like dynamic loading and dynamic
(or “just-in-time”) code generation

• Run-time representation of core language constructs
such as objects (method tables) and first-class func-
tions (closures)

• Run-time layout of memory: call-stack, heap, static
data

– Implementing loops, recursion, and tail calls

• Memory management

– Manual memory management: allocating, de-
allocating, and reusing heap memory

– Automated memory management: garbage col-
lection as an automated technique using the no-
tion of reachability

• Distinguish a language definition (what constructs
mean) from a particular language implementation
(compiler vs interpreter, run-time representation of
data objects, etc) [Assessment]

• Distinguish syntax and parsing from semantics and
evaluation [Assessment]

• Sketch a low-level run-time representation of core
language constructs, such as objects or closures [As-
sessment]

• Explain how programming language implementa-
tions typically organize memory into global data,
text, heap, and stack sections and how features such
as recursion and memory management map to this
memory model [Assessment]

• Identify and fix memory leaks and dangling-pointer
dereferences [Assessment]

• Discuss the benefits and limitations of garbage col-
lection, including the notion of reachability [Assess-
ment]

Readings: Aho et al. (2011), Louden (2004a), Appel (2002), Teufel and Schmidt (1998)

UNIT 3: Syntax Analysis (10)
Competences: a,b,j
Content Generales Goals

• Scanning (lexical analysis) using regular expressions

• Parsing strategies including top-down (e.g., recursive
descent, Earley parsing, or LL) and bottom-up (e.g.,
backtracking or LR) techniques; role of context-free
grammars

• Generating scanners and parsers from declarative
specifications

• Use formal grammars to specify the syntax of lan-
guages [Assessment]

• Use declarative tools to generate parsers and scan-
ners [Assessment]

• Identify key issues in syntax definitions: ambiguity,
associativity, precedence [Assessment]

Readings: Aho et al. (2011), Louden (2004a), Appel (2002), Teufel and Schmidt (1998)

3



UNIT 4: Compiler Semantic Analysis (15)
Competences: a,b,j
Content Generales Goals

• High-level program representations such as abstract
syntax trees

• Scope and binding resolution

• Type checking

• Declarative specifications such as attribute gram-
mars

• Implement context-sensitive, source-level static anal-
yses such as type-checkers or resolving identifiers to
identify their binding occurrences [Assessment]

• Describe semantic analyses using an attribute gram-
mar [Assessment]

Readings: Aho et al. (2011), Louden (2004a), Appel (2002), Teufel and Schmidt (1998)

UNIT 5: Code Generation (20)
Competences: a,b,j
Content Generales Goals

• Procedure calls and method dispatching

• Separate compilation; linking

• Instruction selection

• Instruction scheduling

• Register allocation

• Peephole optimization

• Identify all essential steps for automatically convert-
ing source code into assembly or other low-level lan-
guages [Assessment]

• Generate the low-level code for calling func-
tions/methods in modern languages [Assessment]

• Discuss why separate compilation requires uniform
calling conventions [Assessment]

• Discuss why separate compilation limits optimiza-
tion because of unknown effects of calls [Assessment]

• Discuss opportunities for optimization introduced by
naive translation and approaches for achieving opti-
mization, such as instruction selection, instruction
scheduling, register allocation, and peephole opti-
mization [Assessment]

Readings: Aho et al. (2011), Louden (2004a), Appel (2002), Teufel and Schmidt (1998)

8. Methodology

El profesor del curso presentará clases teóricas de los temas señalados en el programa propiciando la intervención de
los alumnos.

El profesor del curso presentará demostraciones para fundamentar clases teóricas.

El profesor y los alumnos realizarán prácticas

Los alumnos deberán asistir a clase habiendo léıdo lo que el profesor va a presentar. De esta manera se facilitará la
comprensión y los estudiantes estarán en mejores condiciones de hacer consultas en clase.

9. Assessment

Continuous Assessment 1 : 20 %

Partial Exam : 30 %

Continuous Assessment 2 : 20 %

Final exam : 30 %

4



References

Aho, Alfred et al. (2011). Compilers Principles Techniques And Tools. 2nd. ISBN:10-970-26-1133-4. Pearson.
Appel, A. W. (2002). Modern compiler implementation in Java. 2.a edición. Cambridge University Press.
Louden, Kenneth C. (2004a). Compiler Construction: Principles and Practice. Thomson.
Louden, Kenneth C. (2004b). Lenguajes de Programacion. Thomson.
Teufel, Bernard and Stephanie Schmidt (1998). Fundamentos de Compiladores. Addison Wesley Iberoamericana.

5


