

National University of Engineering (UNI)

School of Computer Science Syllabus 2026-I

1. COURSE

MA102FCCS. Differential Calculus (Mandatory)

2. GENERAL INFORMATION

2.1 Course : MA102FCCS. Differential Calculus

2.2 Semester : 1^{st} Semester

2.3 Credits : 5

2.4 Horas : 4 HT; 2 HP;
2.5 Duration of the period : 16 weeks
2.6 Type of course : Mandatory
2.7 Learning modality : Face to face
2.8 Prerrequisites : None

3. PROFESSORS

Meetings after coordination with the professor

4. INTRODUCTION TO THE COURSE

Differential calculus is a fundamental tool in computer science for understanding and modeling change. This course introduces the main concepts of differential calculus, including limits, derivatives, applications of the derivative, and optimization.

5. GOALS

- Understand the concept of a limit and its application to calculating derivatives.
- Apply differentiation rules to calculate derivatives of various functions.
- Use the derivative to solve optimization problems, rates of change, and function analysis.

6. COMPETENCES

1) Analyze a complex computing problem and apply principles of computing and other relevant disciplines to identify solutions. (Assessment)

AG-C07) Computing Knowledge: Applies appropriate knowledge of mathematics, science, and computing. (Assessment)

6) Apply computer science theory and software development fundamentals to produce computing-based solutions. (Usage)

AG-C08) Problem Analysis: Identifies, formulates, and analyzes complex computing problems. (Usage)

AG-C11) Tool Usage: Applies modern computing tools in problem-solving. (Familiarity)

7. TOPICS

Unit 1: Functions and Limits (6 hours)		
Competences Expected: 1,6,AG-C07		
Topics	Learning Outcomes	
Review of functions.Definition of a limit.	 Evaluate limits graphically and numerically. [Familiarizarse (Familiarity)] Apply the properties of limits to evaluate limits al- 	
• Properties of limits.	gebraically. [Usar (<i>Usage</i>)]	
• Limits involving infinity.	• Determine the continuity of a function. [Evaluar (Assessment)]	
• Continuity.	uai (11300331100110)]	
Readings: [Ste15], [LE14]		

Unit 2: The Derivative (6 hours) Competences Expected: 1,6,AG-C07		
 Definition of the derivative. Geometric interpretation of the derivative. Derivatives of polynomial and exponential functions. Differentiation rules: sum, product, quotient, and chain rule. Readings: [Ste15], [LE14]	 Calculate the derivative of a function using the definition. [Familiarizarse (Familiarity)] Interpret the derivative as the slope of the tangent line. [Usar (Usage)] Apply differentiation rules to find derivatives of functions. [Evaluar (Assessment)] 	

Competences Expected: 1,6,AG-C07		
Topics	Learning Outcomes	
 Related rates. Maximum and minimum values. Mean Value Theorem. Concavity and inflection points. Optimization. 	 Solve related rates problems. [Familiarizarse (Familiarity)] Find maximum and minimum values of a function [Usar (Usage)] Apply the Mean Value Theorem. [Evaluar (Assess ment)] Determine the concavity and inflection points of function. [Evaluar (Assessment)] Solve optimization problems. [Evaluar (Assessment)] 	

Unit 4: Transcendental Functions (12 hours)		
Competences Expected: 1,6,AG-C07		
Topics	Learning Outcomes	
 Inverse trigonometric functions. Hyperbolic functions. Derivatives of inverse trigonometric and hyperbolic functions. 	 Evaluate inverse trigonometric functions. [Familiarizarse (Familiarity)] Define and manipulate hyperbolic functions. [Usar (Usage)] Differentiate inverse trigonometric and hyperbolic functions. [Evaluar (Assessment)] 	
Readings: [Ste15], [LE14]		

Unit 5: Applications in Computing (12 hours) Competences Expected: 1,6,AG-C07		
Горісѕ	Learning Outcomes	
 Algorithm optimization. Modeling dynamic systems. Machine learning (e.g., gradient descent). Readings: [Ste15]	 Use derivatives to optimize algorithms. [Familiarizarse (Familiarity)] Model dynamic systems using differential equations. [Usar (Usage)] Apply differential calculus in machine learning algorithms. [Evaluar (Assessment)] 	

8. WORKPLAN

8.1 Methodology

Individual and team participation is encouraged to present their ideas, motivating them with additional points in the different stages of the course evaluation.

8.2 Theory Sessions

The theory sessions are held in master classes with activities including active learning and roleplay to allow students to internalize the concepts.

8.3 Practical Sessions

The practical sessions are held in class where a series of exercises and/or practical concepts are developed through problem solving, problem solving, specific exercises and/or in application contexts.

9. EVALUATION SYSTEM

****** EVALUATION MISSING ******

10. BASIC BIBLIOGRAPHY

[LE14] Ron Larson and Bruce H. Edwards. Calculus. Cengage Learning, 2014.

[Ste15] James Stewart. Calculus: Early Transcendentals. Cengage Learning, 2015.