

Ucayali State University (UNU)

School of Computer Science Sillabus 2023-I

1. COURSE

CS211. Theory of Computation (Mandatory)

2. GENERAL INFORMATION

2.1 Credits : 4

2.2 Theory Hours: 2 (Weekly)2.3 Practice Hours: 2 (Weekly)2.4 Duration of the period: 16 weeks2.5 Type of course: Mandatory2.6 Modality: Blended

2.7 Prerrequisites : CS1D2. Discrete Structures II. (2^{nd} Sem)

3. PROFESSORS

Meetings after coordination with the professor

4. INTRODUCTION TO THE COURSE

This course emphasizes formal languages, computer models and computability, as well as the fundamentals of computational complexity and complete NP problems.

5. GOALS

• That the student learn the fundamental concepts of the theory of formal languages.

6. COMPETENCES

- a) An ability to apply knowledge of mathematics, science. (Assessment)
- b) An ability to design and conduct experiments, as well as to analyze and interpret data. (Assessment)
- j) Apply the mathematical basis, principles of algorithms and the theory of Computer Science in the modeling and design of computational systems in such a way as to demonstrate understanding of the equilibrium points involved in the chosen option. (Assessment)

7. TOPICS

Unit 1: Basic Automata Computability and Complexity (20)		
Competences Expected: a		
Topics	Learning Outcomes	
 Finite-state machines Regular expressions The halting problem Context-free grammars Introduction to the P and NP classes and the P vs. NP problem Introduction to the NP-complete class and exemplary NP-complete problems (e.g., SAT, Knapsack) Turing machines, or an equivalent formal model of universal computation Nondeterministic Turing machines Chomsky hierarchy The Church-Turing thesis Computability Rice's Theorem Examples of uncomputable functions Implications of uncomputability Readings: [Mar10], [Lin11], [Sip12]	 Discuss the concept of finite state machines [Assessment] Design a deterministic finite state machine to accept a specified language [Assessment] Generate a regular expression to represent a specified language [Assessment] Explain why the halting problem has no algorithmic solution [Assessment] Design a context-free grammar to represent a specified language [Assessment] Define the classes P and NP [Assessment] Explain the significance of NP-completeness [Assessment] Explain the Church-Turing thesis and its significance [Familiarity] Explain Rice's Theorem and its significance [Familiarity] Provide examples of uncomputable functions [Familiarity] Prove that a problem is uncomputable by reducing a classic known uncomputable problem to it [Familiarity] 	
O []) []) []		
Unit 2. Advanced Computational Complexity (20)		

Unit 2: Advanced Computational Complexity (20)		
Competences Expected: a,b		
Topics	Learning Outcomes	
 Review of the classes P and NP; introduce P-space and EXP Polynomial hierarchy NP-completeness (Cook's theorem) Classic NP-complete problems Reduction Techniques Readings: [Mar10], [Lin11], [Sip12], [HU13]	 Define the classes P and NP (Also appears in AL/Basic Automata, Computability, and Complexity) [Assessment] Define the P-space class and its relation to the EXP class [Assessment] Explain the significance of NP-completeness (Also appears in AL/Basic Automata, Computability, and Complexity) [Assessment] Provide examples of classic NP-complete problems [Assessment] Prove that a problem is NP-complete by reducing a classic known NP-complete problem to it [Assessment] 	
readings · [mairo], [mirr], [mprz], [moro]		

Unit 3: Advanced Automata Theory and Computability (20) Competences Expected: j		
 Sets and languages Regular languages Review of deterministic finite automata (DFAs) Nondeterministic finite automata (NFAs) Equivalence of DFAs and NFAs Review of regular expressions; their equivalence to finite automata Closure properties Proving languages non-regular, via the pumping lemma or alternative means Context-free languages Push-down automata (PDAs) Relationship of PDAs and context-free grammars Properties of context-free languages Readings: [HU13], [Bro93] 	 Determine a language's place in the Chomsky hierarchy (regular, context-free, recursively enumerable) [Assessment] Convert among equivalently powerful notations for a language, including among DFAs, NFAs, and regular expressions, and between PDAs and CFGs [Assessment] 	

8. WORKPLAN

8.1 Methodology

Individual and team participation is encouraged to present their ideas, motivating them with additional points in the different stages of the course evaluation.

8.2 Theory Sessions

The theory sessions are held in master classes with activities including active learning and roleplay to allow students to internalize the concepts.

8.3 Practical Sessions

The practical sessions are held in class where a series of exercises and/or practical concepts are developed through problem solving, problem solving, specific exercises and/or in application contexts.

9. EVALUATION SYSTEM

****** EVALUATION MISSING ******

10. BASIC BIBLIOGRAPHY

[Bro93] J. Glenn Brookshear. Teoría de la Computación. Addison Wesley Iberoamericana, 1993.

[HU13] John E. Hopcroft and Jeffrey D. Ullman. Introducción a la Teoría de Autómatas, Lenguajes y Computación. Pearson Education, 2013.

[Lin11] Peter Linz. An Introduction to Formal Languages and Automata. 5th. Jones and Bartlett Learning, 2011.

[Mar10] John Martin. Introduction to Languages and the Theory of Computation. 4th. McGraw-Hill, 2010.

[Sip12] Michael Sipser. Introduction to the Theory of Computation. 3rd. Cengage Learning, 2012.